Claude Artifact

Claude Artifact

Claude Artifact

Claude Artifact

Claude Artifact

Claude Artifact

Claude Artifact

I have a table of some entities.

For each of those entity I need to listen in the corresponding kafka topic to get data.

If no data flows for a minute I'll stop the listening process.

I can only spin n number of processes.

Each process will accommodate only one entity at a time. Once it hits the idle timeout it stops.

The master process will maintain we have n number of processes running. It'll check this every 30 seconds.

It checks whether n number of processes running else it'll fill the spaces.

We have an order in which the entities are fetched. Ordered by the listening end time. That will give entities that are given chance way hack.

But the catch master process waits for 30s at this time if all processes hits idle timeout. That time goes to waste.

How can we implement this better? Any existing implementation are there?

Let me suggest an improved approach to this problem that addresses the idle time issue and provides better resource utilization.

import asyncio
from dataclasses import dataclass
from datetime import datetime
from typing import List, Dict, Optional
from asyncio import Queue, Task
import logging
from confluent_kafka import Consumer, KafkaError
from collections import defaultdict

@dataclass
class Entity:
    id: str
    topic: str
    last_processed: datetime

class KafkaConsumerWorker:
    def __init__(self, consumer_config: dict):
        self.consumer_config = consumer_config
        self.running = False
        self.current_entity: Optional[Entity] = None
        self.last_message_time: Optional[datetime] = None

    async def process_messages(self, entity: Entity, message_queue: Queue) -> None:
        self.running = True
        self.current_entity = entity

        consumer = Consumer(self.consumer_config)
        consumer.subscribe([entity.topic])

        try:
            while self.running:
                msg = consumer.poll(1.0)  # 1 second timeout

                if msg is None:
                    # Check idle timeout
                    if self.last_message_time and \\\\
                       (datetime.now() - self.last_message_time).total_seconds() > 60:
                        break
                    continue

                if msg.error():
                    if msg.error().code() == KafkaError._PARTITION_EOF:
                        continue
                    else:
                        logging.error(f"Kafka error: {msg.error()}")
                        break

                # Process message
                self.last_message_time = datetime.now()
                await message_queue.put((entity.id, msg.value()))

        finally:
            consumer.close()
            self.running = False
            self.current_entity = None
            self.last_message_time = None

class ConsumerPool:
    def __init__(self, max_workers: int, consumer_config: dict):
        self.max_workers = max_workers
        self.consumer_config = consumer_config
        self.workers: List[KafkaConsumerWorker] = []
        self.active_tasks: Dict[str, Task] = {}
        self.message_queue: Queue = Queue()
        self.entity_queue: Queue = Queue()
        self.last_processed: Dict[str, datetime] = defaultdict(lambda: datetime.min)

    async def start(self):
        # Start the pool manager and message processor
        await asyncio.gather(
            self.manage_pool(),
            self.process_messages()
        )

    async def manage_pool(self):
        while True:
            current_workers = len(self.active_tasks)

            # Clean up completed tasks
            completed_tasks = [
                entity_id for entity_id, task in self.active_tasks.items()
                if task.done()
            ]
            for entity_id in completed_tasks:
                self.last_processed[entity_id] = datetime.now()
                del self.active_tasks[entity_id]

            # Start new workers if capacity available
            while current_workers < self.max_workers:
                try:
                    # Try to get a new entity immediately
                    entity = await asyncio.wait_for(self.entity_queue.get(), timeout=0.1)

                    # Create and start new worker
                    worker = KafkaConsumerWorker(self.consumer_config)
                    task = asyncio.create_task(
                        worker.process_messages(entity, self.message_queue)
                    )
                    self.active_tasks[entity.id] = task
                    current_workers += 1

                except asyncio.TimeoutError:
                    # No entities waiting, continue monitoring
                    break

            # Short sleep to prevent busy waiting
            await asyncio.sleep(0.1)

    async def process_messages(self):
        while True:
            entity_id, message = await self.message_queue.get()
            # Process message here
            # This is where you'd implement your message handling logic
            logging.info(f"Processed message from entity {entity_id}")

    def add_entity(self, entity: Entity):
        self.entity_queue.put_nowait(entity)

# Example usage
async def main():
    consumer_config = {
        'bootstrap.servers': 'localhost:9092',
        'group.id': 'my_consumer_group',
        'auto.offset.reset': 'earliest'
    }

    pool = ConsumerPool(max_workers=3, consumer_config=consumer_config)

    # Add some example entities
    entities = [
        Entity('entity1', 'topic1', datetime.now()),
        Entity('entity2', 'topic2', datetime.now()),
        Entity('entity3', 'topic3', datetime.now()),
    ]

    for entity in entities:
        pool.add_entity(entity)

    await pool.start()

if __name__ == "__main__":
    asyncio.run(main())

I've designed an improved solution that addresses the idle time issue using an event-driven architecture. Here are the key improvements:

  1. Event-Driven Pool Management:
  2. Queue-Based Entity Management:
  3. Efficient Resource Usage:
  4. Improved Error Handling:
  5. Message Processing Pipeline:

To further improve this implementation, you could:

  1. Add backpressure handling for the message queue